| Topic | Details |
| Topic 1 | - Intro to AI Foundations: This section of the exam measures the skills of AI Practitioners and Data Analysts in understanding the fundamentals of artificial intelligence. It covers key concepts, AI applications across industries, and the types of data used in AI models. It also explains the differences between artificial intelligence, machine learning, and deep learning, providing clarity on how these technologies interact and complement each other.
|
| Topic 2 | - Intro to DL Foundations: This section assesses the expertise of Deep Learning Engineers in understanding deep learning frameworks and architectures. It covers fundamental concepts of deep learning, introduces convolutional neural networks (CNN) for image processing, and explores sequence models like recurrent neural networks (RNN) and long short-term memory (LSTM) networks for handling sequential data.
|
| Topic 3 | - Intro to ML Foundations: This section evaluates the knowledge of Machine Learning Engineers in understanding machine learning principles and methodologies. It explores the basics of supervised learning, focusing on regression and classification techniques, along with unsupervised learning methods such as clustering and anomaly detection. It also introduces reinforcement learning fundamentals, helping professionals grasp the different approaches used to train AI models.
|
| Topic 4 | - Intro to OCI AI Services: This section tests the expertise of AI Solutions Engineers in working with OCI AI services and related APIs. It provides insights into key AI services such as language processing, computer vision, document understanding, and speech recognition, allowing professionals to leverage Oracle¡¯s AI ecosystem for building intelligent applications.
|
| Topic 5 | - Get started with OCI AI Portfolio: This section measures the proficiency of Cloud AI Specialists in exploring Oracle Cloud Infrastructure (OCI) AI services. It provides an overview of OCI AI and machine learning services, details AI infrastructure capabilities and explains responsible AI principles to ensure ethical and transparent AI development.
|