| Topic | Details |
| Topic 1 | - PromQL: This section of the exam measures the skills of Monitoring Specialists and focuses on Prometheus Query Language (PromQL) concepts. It covers data selection, calculating rates and derivatives, and performing aggregations across time and dimensions. Candidates also study the use of binary operators, histograms, and timestamp metrics to analyze monitoring data effectively, ensuring accurate interpretation of system performance and trends.
|
| Topic 2 | - Instrumentation and Exporters: This domain evaluates the abilities of Software Engineers and addresses the methods for integrating Prometheus into applications. It includes the use of client libraries, the process of instrumenting code, and the proper structuring and naming of metrics. The section also introduces exporters that allow Prometheus to collect metrics from various systems, ensuring efficient and standardized monitoring implementation.
|
| Topic 3 | - Alerting and Dashboarding: This section of the exam assesses the competencies of Cloud Operations Engineers and focuses on monitoring visualization and alert management. It covers dashboarding basics, alerting rules configuration, and the use of Alertmanager to handle notifications. Candidates also learn the core principles of when, what, and why to trigger alerts, ensuring they can create reliable monitoring dashboards and proactive alerting systems to maintain system stability.
|
| Topic 4 | - Prometheus Fundamentals: This domain evaluates the knowledge of DevOps Engineers and emphasizes the core architecture and components of Prometheus. It includes topics such as configuration and scraping techniques, limitations of the Prometheus system, data models and labels, and the exposition format used for data collection. The section ensures a solid grasp of how Prometheus functions as a monitoring and alerting toolkit within distributed environments.
|
| Topic 5 | - Observability Concepts: This section of the exam measures the skills of Site Reliability Engineers and covers the essential principles of observability used in modern systems. It focuses on understanding metrics, logs, and tracing mechanisms such as spans, as well as the difference between push and pull data collection methods. Candidates also learn about service discovery processes and the fundamentals of defining and maintaining SLOs, SLAs, and SLIs to monitor performance and reliability.
|