| 主題 | 簡介 |
| 主題 1 | - Prompt Engineering: This section of the exam measures skills of AI Engineers and Software Developers and covers the fundamentals of prompt engineering, including key principles, techniques, and best practices for generating high-quality outputs. It explains different prompting strategies such as zero-shot and few-shot prompting, how context influences AI-generated responses, and the role of structured prompts in guiding Copilot's behavior. It also discusses the prompt lifecycle and ways to enhance model performance through refined input instructions.
|
| 主題 2 | - How GitHub Copilot Works and Handles Data: This section of the exam measures the skills of Data Security Specialists and DevOps Engineers and covers how GitHub Copilot processes data, handles code suggestions and manages privacy concerns. It explains the data pipeline for Copilot’s suggestions, how it gathers context, and how prompts are processed through its AI model. The section also discusses the limitations of AI-generated code, the effects of historical data on suggestions, and the role of prompt crafting. Best practices for improving prompt effectiveness and optimizing AI-generated responses are included.
|
| 主題 3 | - Responsible AI: This section of the exam measures the skills of AI Ethics Analysts and AI Developers and covers the principles of responsible AI usage, the risks associated with AI, and the limitations of generative AI tools. It includes the importance of validating AI-generated outputs and operating AI systems responsibly. It also explores potential harms such as bias, privacy concerns, and fairness issues, along with methods to mitigate these risks. The ethical considerations of AI development and deployment are also discussed.
|
| 主題 4 | - GitHub Copilot Plans and FeaturesThis section of the exam measures the skills of Software Engineers and IT Administrators and covers different GitHub Copilot plans, including Individual, Business, and Enterprise editions. It explains the integration of GitHub Copilot within IDEs and discusses key features such as inline chat, multiple suggestions, and exception handling. The section details the policies for managing GitHub Copilot within organizations, including auditing logs and API management. It also highlights advanced functionalities like knowledge bases for improved code quality and best practices for Copilot Chat usage.
|
| 主題 5 | - Developer Use Cases for AI: This section of the exam measures skills of Full-Stack Developers and Cloud Engineers and covers how AI enhances developer productivity across various tasks such as learning new programming languages, debugging, writing documentation, and refactoring code. It discusses how GitHub Copilot integrates with the Software Development Lifecycle (SDLC) and its role in modernizing legacy applications. It also highlights the use of AI for personalized responses, sample data generation, and improving overall efficiency in software development.
|