| Topic | Details |
| Topic 1 | - Testing AI-Based Systems Overview: In this section, focus is given to how system specifications for AI-based systems can create challenges in testing and explain automation bias and how this affects testing.
|
| Topic 2 | - Testing AI-Specific Quality Characteristics: In this section, the topics covered are about the challenges in testing created by the self-learning of AI-based systems.
|
| Topic 3 | - Introduction to AI: This exam section covers topics such as the AI effect and how it influences the definition of AI. It covers how to distinguish between narrow AI, general AI, and super AI; moreover, the topics covered include describing how standards apply to AI-based systems.
|
| Topic 4 | - systems from those required for conventional systems.
|
| Topic 5 | - ML Functional Performance Metrics: In this section, the topics covered include how to calculate the ML functional performance metrics from a given set of confusion matrices.
|
| Topic 6 | - Test Environments for AI-Based Systems: This section is about factors that differentiate the test environments for AI-based
|
| Topic 7 | - ML: Data: This section of the exam covers explaining the activities and challenges related to data preparation. It also covers how to test datasets create an ML model and recognize how poor data quality can cause problems with the resultant ML model.
|
| Topic 8 | - Methods and Techniques for the Testing of AI-Based Systems: In this section, the focus is on explaining how the testing of ML systems can help prevent adversarial attacks and data poisoning.
|