| Topic | Details |
| Topic 1 | - Matching AI with Business Needs (Phase I): This section of the exam measures the skills of a Business Analyst and covers how to evaluate whether AI is the right fit for a specific organizational problem. It focuses on identifying real business needs, checking feasibility, estimating return on investment, and defining a scope that avoids unrealistic expectations. The section ensures that learners can translate business objectives into AI project goals that are clear, achievable, and supported by measurable outcomes.
|
| Topic 2 | - Iterating Development and Delivery of AI Projects (Phase IV): This section of the exam measures the skills of an AI Developer and covers the practical stages of model creation, training, and refinement. It introduces how iterative development improves accuracy, whether the project involves machine learning models or generative AI solutions. The section ensures that candidates understand how to experiment, validate results, and move models toward production readiness with continuous feedback loops.
|
| Topic 3 | - Testing and Evaluating AI Systems (Phase V): This section of the exam measures the skills of an AI Quality Assurance Specialist and covers how to evaluate AI models before deployment. It explains how to test performance, monitor for drift, and confirm that outputs are consistent, explainable, and aligned with project goals. Candidates learn how to validate models responsibly while maintaining transparency and reliability.}
|