Firefly Open Source Community

   Login   |   Register   |
New_Topic
Print Previous Topic Next Topic

[General] Microsoft AI-900 Exam | AI-900更新版 - 1年間無料アップデートAI-900認証試験

127

Credits

0

Prestige

0

Contribution

registered members

Rank: 2

Credits
127

【General】 Microsoft AI-900 Exam | AI-900更新版 - 1年間無料アップデートAI-900認証試験

Posted at yesterday 00:51      View:6 | Replies:0        Print      Only Author   [Copy Link] 1#
P.S. It-PassportsがGoogle Driveで共有している無料かつ新しいAI-900ダンプ:https://drive.google.com/open?id=1ETQ0y9AXCZng4F1E6p_l4OEpBKt7vY10
今日の職場では、さまざまなトレーニング資料とツールが常に混乱を招き、品質をテストするために余分な時間を費やしているため、学習に時間を浪費しています。実際、当社のAI-900テスト問題を完全に信じて、AI-900試験に合格することを100%保証します。また、AI-900テスト問題を購入してから1年間無料で更新できます。また、AI-900試験問題を購入する前に無料試用版を入手できます。 AI-900試験ダンプの利点は数え切れないほどあります。AI-900学習ガイドを購入するだけです!
Microsoft AI-900 認定試験の出題範囲:
トピック出題範囲
トピック 1
  • Describe fundamental principles of machine learning on Azure: It describes core machine learning concepts and Azure Machine Learning capabilities. Moreover, the topic also delves into identifying common machine-learning techniques.
トピック 2
  • Describe features of Natural Language Processing (NLP) workloads on Azure: In this topic, questions about common NLP Workload Scenarios features, Azure tools, and services for NLP workloads appear.
トピック 3
  • Describe Artificial Intelligence workloads and considerations: It identifies specifications of common AI workloads and guiding principles for responsible AI.
トピック 4
  • Describe features of computer vision workloads on Azure: This topic discusses identifying common types of computer vision solution, Azure tools and services for computer vision tasks.
トピック 5
  • Describe features of generative AI workloads on Azure: Features of generative AI solutions and capabilities of Azure OpenAI Service are discussed in this topic.

AI-900認証試験、AI-900日本語版対応参考書Microsoft Azure AI Fundamentals試験の質問は、競争で際立ったものにすることができます。何故ですか?答えは、AI-900証明書を取得することです。どんな証明書?証明書は、さまざまな資格試験に合格したことを証明します。試験は一晩で行われず、多くの人が適切な方法を見つけようとしているため、AI-900試験に時間と労力を費やす人が増えていることがわかります。幸いなことに、AI-900の実際の試験材料が見つかりました。これはあなたに最適です。
AI-900試験では、機械学習、自然言語処理、コンピュータービジョン、会話AIなど、人工知能に関連するさまざまなトピックをカバーしています。また、AIの倫理的な考慮事項と責任ある使用に焦点を当てています。この試験は、データサイエンス、ソフトウェアエンジニアリング、またはクラウドコンピューティングのキャリアを追求することに興味がある個人に最適です。
Microsoft Azure AI Fundamentals 認定 AI-900 試験問題 (Q277-Q282):質問 # 277
For each of the following statements, select Yes if the statement is true. Otherwise, select No.
NOTE: Each correct selection is worth one point.

正解:
解説:

Explanation:

This question evaluates understanding of fundamental machine learning concepts as covered in the Microsoft Azure AI Fundamentals (AI-900) official study guide and Microsoft Learn module "Explore the machine learning process." These statements relate to data labeling, model evaluation practices, and performance metrics-three essential parts of building and assessing a machine learning model.
* Labelling is the process of tagging training data with known values # YesAccording to Microsoft Learn,
"Labeling is the process of tagging data with the correct output value so the model can learn relationships between inputs and outputs." This is essential for supervised learning, where models require historical data with known outcomes. For example, if training a model to recognize fruit images, each image is labeled as "apple," "banana," or "orange." Hence, this statement is true.
* You should evaluate a model by using the same data used to train the model # NoThe AI-900 guide stresses that using the same data for both training and evaluation can cause overfitting, where the model performs well on training data but poorly on unseen data. Instead, the dataset is split into training and testing (or validation) subsets. Evaluation must use test data that the model has never seen before to ensure an unbiased measure of performance. Therefore, this statement is false.
* Accuracy is always the primary metric used to measure a model's performance # NoMicrosoft Learn emphasizes that accuracy is only one metric and not always the best choice. Depending on the problem type, other metrics such as precision, recall, F1-score, or AUC (Area Under the Curve) may be more appropriate-especially in cases with imbalanced datasets. For example, in fraud detection, recall may be more important than accuracy. Thus, this statement is false.

質問 # 278
For each of the following statements, select Yes if the statement is true. Otherwise, select No.
NOTE: Each correct selection is worth one point.

正解:
解説:

Explanation

Box 1: Yes
Azure bot service can be integrated with the powerful AI capabilities with Azure Cognitive Services.
Box 2: Yes
Azure bot service engages with customers in a conversational manner.
Box 3: No
The QnA Maker service creates knowledge base, not question and answers sets.
Note: You can use the QnA Maker service and a knowledge base to add question-and-answer support to your bot. When you create your knowledge base, you seed it with questions and answers.
Reference:
https://docs.microsoft.com/en-us ... er-tutorial-add-qna

質問 # 279
You use natural language processing to process text from a Microsoft news story.
You receive the output shown in the following exhibit.

Which type of natural languages processing was performed?
  • A. translation
  • B. entity recognition
  • C. key phrase extraction
  • D. sentiment analysis
正解:C
解説:
Section: Describe features of Natural Language Processing (NLP) workloads on Azure Explanation:
Key phrase extraction/ Broad entity extraction: Identify important concepts in text, including key phrases and named entities such as people, places, and organizations.
Reference:
https://azure.microsoft.com/en-u ... ices/text-analytics

質問 # 280
Match the types of machine learning to the appropriate scenarios.
To answer, drag the appropriate machine learning type from the column on the left to its scenario on the right. Each machine learning type may be used once, more than once, or not at all.
NOTE: Each correct selection is worth one point.

正解:
解説:

Reference:
https://developers.google.com/ma ... mage-classification
https://docs.microsoft.com/en-us ... ction-model-builder
https://nanonets.com/blog/how-to ... sing-deep-learning/

質問 # 281
To complete the sentence, select the appropriate option in the answer area.

正解:
解説:

Explanation

Natural language processing (NLP) is used for tasks such as sentiment analysis, topic detection, language detection, key phrase extraction, and document categorization.
Reference:
https://docs.microsoft.com/en-us ... language-processing

質問 # 282
......
AI-900認証試験: https://www.it-passports.com/AI-900.html
P.S. It-PassportsがGoogle Driveで共有している無料かつ新しいAI-900ダンプ:https://drive.google.com/open?id=1ETQ0y9AXCZng4F1E6p_l4OEpBKt7vY10
Reply

Use props Report

You need to log in before you can reply Login | Register

This forum Credits Rules

Quick Reply Back to top Back to list