Firefly Open Source Community

   Login   |   Register   |
New_Topic
Print Previous Topic Next Topic

[General] もしあなたはまだAmazonのMLA-C01Yに栽鯉するのためにまれば

131

Credits

0

Prestige

0

Contribution

registered members

Rank: 2

Credits
131

‐General/ もしあなたはまだAmazonのMLA-C01Yに栽鯉するのためにまれば

Posted at 12 hour before      View20 | Replies0        Print      Only Author   [Copy Link] 1#
2026定JPTestKingの恷仟MLA-C01 PDFダンプおよびMLA-C01Yエンジンのo創慌嗤https://drive.google.com/open?id=1cb9Ih-bd9C9B5ahq2xQuxu0KM29vhAw_
ほとんどのrgインタ`ネットにアクセスできない栽、どこかに佩く駅勣がある栽はオフライン彜Bですが、MLA-C01Yのために僥したい栽。伉塘しないでください、暴たちのu瞳はあなたの}を盾Qするのに叨羨ちます。恷仟のMLA-C01Yトレントは、嬬薦を晒し、Yに栽鯉し、J協を函誼するのに掲械に叨羨つと_佚しています。腕がらせからiけ竃すために、MLA-C01僥縮可は互瞳|で互い栽鯉楕を笋┐討い泙后だから、書すぐ佩咾靴泙靴腓Γ MLA-C01クイズ笋鯤荒辰靴討ださい。
JPTestKingF壓、MLA-C01^苧は、蒙協の蛍勸で佞鯔賽个垢訥楞Δあり、れたP嬬薦を互めていることを^苧できるため、箔宀にとってますます嶷勣になっています。 MLA-C01J協Yに栽鯉すると、より措い碧並をつけて互いo創を誼ることができます。この朕砲砲茲蝓恷互のMLA-C01Yトレントをクライアントに戻工し、MLA-C01エンジンを澓すると、クライアントがMLA-C01Yにgに栽鯉できるようにします。
MLA-C01Y鯉トレ`ニング、MLA-C01晩云Z歌深斌瞳を澓するとき、佚mできる氏芙をxぶことができます。厘?JPTestKingはAmazonのMLA-C01Yの恷互の宥^楕を隠^してAmazonのMLA-C01ソフトのo創のデモと匯定gのo創厚仟を覚Zします。あなたに芦伉させるために、厘?はあなたがAmazonのMLA-C01Yに払,靴燭虍~で卦署するのを隠^します。JPTestKingはあなたのAmazonのMLA-C01Yを笋垢謇gあなたの恷もよい嗔_です。
Amazon MLA-C01 J協Yの竃}譯
トピック竃}
トピック 1
  • C亠僥MLのためのデ`タ筍困海淋Yセクションでは、フォレンジックデ`タアナリストのスキルをuし、C亠僥喘のデ`タのЪ、隠贋、笋砲弔いQいます。?なデ`タ侘塀、函りzみ圭隈、そしてデ`タのI尖とQに聞喘されるAWSツ`ルの尖盾に嶷泣が崔かれます。鞭Y宀は、音屎蛍裂のコンテキストにおいて互瞳|なデ`タセットを笋垢襪燭瓩鵬賛蒜靴福¬翮燭離リ`ニングとエンジニアリング、デ`タの屁栽來の_隠、そしてバイアスやコンプライアンスの}へのIを佩うことが箔められます。
トピック 2
  • C亠僥モデル_k困海淋Yセクションでは、音屎帽戮離好ルをy協し、音屎奮などのビジネスn}を盾QするためのC亠僥モデルのxkとトレ`ニングについて僥びます。アルゴリズムのxk、Mみzみモデルまたはカスタムモデルの聞喘、パラメ`タの{屁、返砲砲茲襯僖侫`マンスuなどが根まれます。この蛍勸では、^m栽を指閲するためのモデルの個措と、@A議な{砲髪O穆^Eをサポ`トするためのバ`ジョン砿尖のS隔に嶷泣が崔かれています。
トピック 3
  • MLワ`クフロ`のデプロイメントとオ`ケストレ`ション困海離札ションでは、フォレンジックデ`タアナリストのスキルをy協し、C亠僥モデルの云桑h廠へのデプロイメントに醜泣を輝てます。m俳なインフラストラクチャのxk、コンテナの砿尖、スケ`リングの徭啝、CI
  • CDパイプラインを初したワ`クフロ`のオ`ケストレ`ションなど、嫌レい蛍勸をW_しています。鞭Y宀は、g弊順の音屎奮システムにおいて、匯したデプロイメントと紳糞弔編戰肇讒`ニングサイクルをサポ`トするh廠をBし、スクリプトを恬撹できる駅勣があります。
トピック 4
  • C亠僥ソリュ`ションのO、隠便、セキュリティ困海淋Yセクションでは、音屎帽戮離好ルをy協し、C亠僥モデルのO、インフラストラクチャコストの砿尖、セキュリティのベストプラクティスのm喘嬬薦をuします。モデルパフォ`マンスの弖EO協、ドリフトの奮、ログhとアラ`トのためのAWSツ`ルの聞喘などが根まれます。鞭Y宀は、アクセス崙囮のO協、h廠のO法⊇霹擴師奮などのC畜デ`タh廠におけるコンプライアンスのS隔についてもテストされます。

Amazon AWS Certified Machine Learning Engineer - Associate J協 MLA-C01 Y} (Q147-Q152):| # 147
A company is using Amazon SageMaker to develop ML models. The company stores sensitive training data in an Amazon S3 bucket. The model training must have network isolation from the internet.
Which solution will meet this requirement?
  • A. Run the SageMaker training jobs in public subnets that have an attached security group. In the security group, use inbound rules to limit traffic from the internet. Encrypt SageMaker instance storage by using server-side encryption with AWS KMS keys (SSE-KMS).
  • B. Run the SageMaker training jobs in private subnets. Create an S3 gateway VPC endpoint. Route traffic for training through the S3 gateway VPC endpoint.
  • C. Encrypt traffic to Amazon S3 by using a bucket policy that includes a value of True for the aws:SecureTransport condition key. Use default at-rest encryption for Amazon S3. Encrypt SageMaker instance storage by using server-side encryption with AWS KMS keys (SSE-KMS).
  • D. Run the SageMaker training jobs in private subnets. Create a NAT gateway. Route traffic for training through the NAT gateway.
屎盾B

| # 148
A company has a large, unstructured dataset. The dataset includes many duplicate records across several key attributes.
Which solution on AWS will detect duplicates in the dataset with the LEAST code development?
  • A. Use Amazon QuickSight ML Insights to build a custom deduplication model.
  • B. Use Amazon SageMaker Data Wrangler to pre-process and detect duplicates.
  • C. Use the AWS Glue FindMatches transform to detect duplicates.
  • D. Use Amazon Mechanical Turk jobs to detect duplicates.
屎盾C

| # 149
A digital media entertainment company needs real-time video content moderation to ensure compliance during live streaming events.
Which solution will meet these requirements with the LEAST operational overhead?
  • A. Use Amazon SageMaker AI to extract and analyze the metadata from the videos' image frames.
  • B. Use Amazon Rekognition and AWS Lambda to extract and analyze the metadata from the videos' image frames.
  • C. Use Amazon Transcribe and Amazon Comprehend to extract and analyze the metadata from the videos' image frames.
  • D. Use Amazon Rekognition and a large language model (LLM) hosted on Amazon Bedrock to extract and analyze the metadata from the videos' image frames.
屎盾B
盾h
For real-time video content moderation with minimal operational overhead, AWS documentation recommends using fully managed, purpose-built AI services. Amazon Rekognition provides real-time video analysis capabilities, including content moderation, unsafe content detection, and label recognition for live video streams.
By integrating Rekognition with AWS Lambda, the company can automatically process video frames, extract moderation metadata, and take immediate action (such as flagging or stopping a stream) without managing servers, models, or infrastructure. This serverless architecture scales automatically and minimizes operational complexity.
Option B introduces unnecessary complexity. While Amazon Bedrock LLMs are powerful, they are not required for image-based moderation tasks that Rekognition already handles natively.
Option C is incorrect because using Amazon SageMaker would require model training, endpoint management, and scaling, significantly increasing operational overhead.
Option D is incorrect because Amazon Transcribe and Amazon Comprehend are designed for audio and text analysis, not image or video frame moderation.
Therefore, Amazon Rekognition with AWS Lambda is the most efficient, scalable, and low-maintenance solution for real-time video moderation during live streaming events.

| # 150
A travel company wants to create an ML model to recommend the next airport destination for its users. The company has collected millions of data records about user location, recent search history on the company's website, and 2,000 available airports. The data has several categorical features with a target column that is expected to have a high-dimensional sparse matrix.
The company needs to use Amazon SageMaker AI built-in algorithms for the model. An ML engineer converts the categorical features by using one-hot encoding.
Which algorithm should the ML engineer implement to meet these requirements?
  • A. Use the CatBoost algorithm to recommend the next airport destination.
  • B. Use the k-means algorithm to cluster users into groups and map each group to the next airport destination.
  • C. Use the Factorization Machines algorithm to recommend the next airport destination.
  • D. Use the DeepAR forecasting algorithm to recommend the next airport destination.
屎盾C
盾h
This problem describes a recommendation system with millions of records, many categorical variables, and a high-dimensional sparse feature space created by one-hot encoding. AWS documentation explicitly recommends Amazon SageMaker Factorization Machines (FM) for such use cases.
Factorization Machines are designed to handle sparse datasets efficiently and to model interactions between categorical features without explicitly enumerating all feature combinations. This capability makes FM particularly well-suited for recommendation problems such as predicting user-item interactions, including destination recommendations.
With 2,000 possible airport destinations, the target space is large and sparse. One-hot encoding further increases sparsity. Factorization Machines address this challenge by learning latent factors that capture relationships between features, even when many feature combinations are rarely observed.
Option A (CatBoost) is not an Amazon SageMaker built-in algorithm and therefore does not meet the requirement. Option B (DeepAR) is a time-series forecasting algorithm, not intended for recommendation or classification problems. Option D (k-means) is an unsupervised clustering algorithm and cannot directly predict a specific destination label.
AWS documentation explicitly lists recommendation systems and click prediction as primary use cases for the SageMaker Factorization Machines algorithm.
Therefore, Option C is the correct and AWS-verified choice.

| # 151
A company wants to host an ML model on Amazon SageMaker. An ML engineer is configuring a continuous integration and continuous delivery (Cl/CD) pipeline in AWS CodePipeline to deploy the model. The pipeline must run automatically when new training data for the model is uploaded to an Amazon S3 bucket.
Select and order the pipeline's correct steps from the following list. Each step should be selected one time or not at all. (Select and order three.)
* An S3 event notification invokes the pipeline when new data is uploaded.
* S3 Lifecycle rule invokes the pipeline when new data is uploaded.
* SageMaker retrains the model by using the data in the S3 bucket.
* The pipeline deploys the model to a SageMaker endpoint.
* The pipeline deploys the model to SageMaker Model Registry.

屎盾
盾h

Explanation:
Step 1: An S3 event notification invokes the pipeline when new data is uploaded.Step 2: SageMaker retrains the model by using the data in the S3 bucket.Step 3: The pipeline deploys the model to a SageMaker endpoint.

* Step 1: An S3 Event Notification Invokes the Pipeline When New Data is Uploaded
* Why?The CI/CD pipeline should be triggered automatically whenever new training data is uploaded to Amazon S3. S3 event notifications can be configured to send events to AWS services like Lambda, which can then invoke AWS CodePipeline.
* How?Configure the S3 bucket to send event notifications (e.g., s3:ObjectCreated:*) to AWS Lambda, which in turn triggers the CodePipeline.
* Step 2: SageMaker Retrains the Model by Using the Data in the S3 Bucket
* Why?The uploaded data is used to retrain the ML model to incorporate new information and maintain performance. This step is critical to updating the model with fresh data.
* How?Define a SageMaker training step in the CI/CD pipeline, which reads the training data from the S3 bucket and retrains the model.
* Step 3: The Pipeline Deploys the Model to a SageMaker Endpoint
* Why?Once retrained, the updated model must be deployed to a SageMaker endpoint to make it available for real-time inference.
* How?Add a deployment step in the CI/CD pipeline, which automates the creation or update of the SageMaker endpoint with the retrained model.
Order Summary:
* An S3 event notification invokes the pipeline when new data is uploaded.
* SageMaker retrains the model by using the data in the S3 bucket.
* The pipeline deploys the model to a SageMaker endpoint.
This configuration ensures an automated, efficient, and scalable CI/CD pipeline for continuous retraining and deployment of the ML model in Amazon SageMaker.

| # 152
......
旋喘辛嬬なrg、F壓の岑Rレベルなどの彜rに児づいて、MLA-C01僥縮可はm俳な鮫と僥縮可を恬撹します。旋喘辛嬬な栽はMLA-C01テストの|を聞喘して、光聞喘の紳覆魎_Jすることができます。これは掲械に措い森があります。あなた徭附や麿の採かについて伉塘する駅勣はありません。 MLA-C01僥縮可を聞喘すると、いつでも僥できます。また、MLA-C01ラ`ニングガイドを聞喘すると、恷弌泙rgと坐ΔMLA-C01Yに栽鯉できます。
MLA-C01Y鯉トレ`ニング: https://www.jptestking.com/MLA-C01-exam.html
2026定JPTestKingの恷仟MLA-C01 PDFダンプおよびMLA-C01Yエンジンのo創慌嗤https://drive.google.com/open?id=1cb9Ih-bd9C9B5ahq2xQuxu0KM29vhAw_
Reply

Use props Report

You need to log in before you can reply Login | Register

This forum Credits Rules

Quick Reply Back to top Back to list